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Abstract

In this paper, we study the dynamical properties of set-valued dynamical systems. Specifically,
we focus on the sensitivity, transitivity and mixing of set-valued dynamical systems. Under the
setting of set-valued case, we define sensitivity and investigate its properties. We also study the
transitivity and mixing of set-valued dynamical systems that have been defined. We show that
both transitivity and mixing are invariant under topological conjugacy. We also discuss some
implication results on the product set-valued function constructed from two different set-valued
functions equipped with various transitivity and mixing conditions.
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1 Introduction

Dynamical systems are widely used as mathematical models to study numerous applications
in various fields ranging from natural to social sciences. For many years, the chaotic behaviour
of the systems or so-called chaos remains one of the biggest interests among researchers. Up till
now various notions of chaos have been introduced (see [10]). Oprocha and Zhang [16] analyzed
the relationships between different notions of chaos on dynamical systems. In general, these no-
tions of chaos are not equivalent but most of them are studied in view of topology. Two common
ingredients for the notions of chaos are transitivity and sensitivity of the system.

Normally the dynamics of the system is investigated in the aspect of individual single point.
However, there are problems and cases where one is required to investigate the dynamics of the
system in the aspect of a collection of points. In recent years, works and research on the dynamics
of set-valued dynamical systems can be found. The results from Román-Flores [6] proved that
transitivity on set-valueddynamical system implies transitivty on single-valueddynamical system
and gave an example to show that the converse is not always true. Metzger et al. [12] proposed
topological stability for set-valued maps and extended several results from classical single-valued
cases into set-valued cases. As a continuation work from [19], the aim of this paper is to introduce
the concept of sensitivity for set-valued dynamical systems and investigate more properties on
the transitivity and mixing of set-valued dynamical systems. We define sensitivity under set-
valued setting and show that topologically mixing set-valued function implies sensitive. We also
prove that a set-valued dynamical systemwhich contain at least one transitive point does not have
sensitive property. Besides that, we show that the transitivity and mixing of set-valued function
are invariant under topological conjugacy and discuss some implication results on the product set-
valued function constructed from two set-valued functions equipped with different transitivity
and mixing conditions.

This paper will be organized as follows. In Section 2 we recall some definitions and introduce
some notations. In Section 3 we prove some results on the sensitivity of set-valued dynamical
systems. In Section 4 we focus on the invariant properties of transitivity andmixing for set-valued
function and show some implications of transitivity and mixing on the product set-valued func-
tion.

2 Preliminaries

Let (X, d) be a compact metric space and 2X be the collection of all nonempty closed sub-
sets of X . We call a function F : X → 2X as set-valued function. If A ⊆ X , we have F (A) =
{y ∈ X : there is a point x ∈ A such that y ∈ F (x)}. The set-valued function F is said to be up-
per semicontinuous at x ∈ X if for any open subset V ofX containingF (x), there is an open subset
U of X containing x such that for every t ∈ U , then F (t) ⊆ V . Moreover, F is upper semicontin-
uous if it is upper semicontinuous at every point ofX . Throughout the paper we represent (X, d)
by X and assume the set-valued function F is upper semicontinuous unless explicitly stated.

By (0.8) from [14], we know that 2X is compact. Therefore, it is clear that every element of
2X is also a nonempty compact subset of X since they are nonempty closed subsets of X . The
pair (X,F ) is called as set-valued dynamical system. F 0 is denoted as the identity on X and
Fn = F ◦ Fn−1 for all integers n > 0. We will list out some definitions that have been defined
under the set-valued setting.
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Definition 2.1 ([2]). Let F : X → 2X be a set-valued function, then the inverse set-valued function
F−1 : X → 2X is defined by F−1(y) = {x ∈ X : y ∈ F (x)} for all y ∈ X .

Definition 2.2 ([17]). Let (X,F ) be a set-valued dynamical system. For x ∈ X , an orbit of x is a sequence
(xi)

∞
i=0 such that x0 = x and xi+1 ∈ F (xi) for all integers i ≥ 0. The collection of all orbits of x is called

as the complete orbit of x, denoted by CO(x).

It is obvious that the orbits are not uniquely determined in set-valued case as shown by Exam-
ple 2.3 in [19]. Note that the product set-valued function F × F : X ×X → 2X×X is defined by
(F × F )(x, x′) = {(y, y′) ∈ X ×X : y ∈ F (x) and y′ ∈ F (x′)} for all x, x′ ∈ X .

Definition 2.3 ([19]). Let (X,F ) be a set-valued dynamical system. A set-valued function F is topolog-
ically transitive if for any nonempty open subsets U and V of X , there exists m ∈ N and x ∈ U with an
orbit (xi)∞i=0 such that xm ∈ V .

Definition 2.4 ([17]). A set-valued function F is topologically mixing if for any nonempty open subsets
U and V in X , there is aM ∈ N such that for any m > M there is an x ∈ U with an orbit (xi)∞i=0 such
that xm ∈ V .

Definition 2.5 ([19]). Let F be a set-valued function of a compact metric space X . Then F is said to be

i) Topologically bitransitive if F 2 is topologically transitive.

ii) Totally transitive if Fn is topologically transitive for all n ∈ N.

iii) Weakly mixing if the product set-valued function F × F is topologically transitive.

Recall that in single-valued case, a continuous function f : X → X is said to be sensitive
dependence on initial conditions (or just sensitive) if there exists ε > 0 such that for each x ∈ X
and each δ > 0 there is y ∈ X with d(x, y) < δ and n ∈ N such that d(fn(x), fn(y)) > ε. We will
generalize this notion to set-valued setting as follows.

Definition 2.6. Let X be a compact metric space and F : X → 2X be a set-valued function on X . F is
said to be sensitive dependence on initial conditions if there exists an ε > 0 such that for all points x ∈ X
and for each δ > 0, there exists at least one y ∈ X with d(x, y) < δ and a positive integer k such that both
x and y have an orbit (xi)∞i=0 and (yi)

∞
i=0 respectively where d(xk, yk) ≥ ε. The constant value ε is called

as sensitive constant.

While the notion of sensitivity is used to describe the chaotic behaviour of the systems, we use
the notion of equicontinuity to describe the stability of the systems. One can see that both notions
are in opposition to each other. It is well known that equicontinuous single-valued dynamical
systems will only have simple dynamical behaviours and this result is true for set-valued case
as well ([15]). Below we define equicontinuous under set-valued setting which extend from the
corresponding definition in the single-valued case ([4]).

Definition 2.7. Let (X,F ) be a set-valued dynamical system. The set-valued function F is said to be
equicontinuous at x ∈ X if for every ε > 0 there exists a δ > 0 such that for any y ∈ X with d(x, y) < δ,
both x and y have an orbit (xi)∞i=0 and (yi)

∞
i=0 respectively satisfy d(xk, yk) < ε for all positive integers

k. The point x ∈ X that satisfy the condition is known as equicontinuous point. Moreover, F is said to be
equicontinuous if every point x ∈ X is an equicontinuous point.

Another useful concept in dynamical systems is topological conjugacy which use to describe
the similarities in dynamical behaviour between two different systems. Topological conjugacy
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allows one to investigate the dynamical behaviour of some new or complicated dynamical sys-
tems by comparing it with a well-known dynamical system. Below is the definition of topological
conjugacy under set-valued setting.

Definition 2.8 ([9]). Let (X,F ) and (Y,G) be set-valued dynamical systems. G is topologically semi-
conjugate to F if there exists a continuous surjection h : X → Y such that (G ◦ h)(x) ⊆ (h ◦ F )(x)
for all x ∈ X . The surjection h is called as topological semi-conjugacy from (X,F ) to (Y,G). We say
that G is topologically conjugate to F if there exists a homeomorphism function h : X → Y such that
(G ◦ h)(x) = (h ◦ F )(x) for all x ∈ X . The function h is called as topological conjugacy between (X,F )
and (Y,G).

3 Sensitivity of Set-valued Function

Sensitive is one of the main components in various notions of chaos, for e.g. Li-Yorke Sen-
sitivity, Devaney Chaos, and Auslander-Yorke Chaos. Akin and Kolyada [1] proposed Li-Yorke
sensitivity and proved that weak mixing systems are Li-Yorke sensitive. Devaney [5] studied his
own version of chaos infused with concept of sensitivity in various dimensional dynamics. Aus-
lander and Yorke [3] gave a new notion of chaos and proved that anymap on an interval satisfying
a generalized period three condition have chaos. It is well known that both sensitivity and tran-
sitivity are closely related in single-valued dynamical systems (see [10]). We will show that in
set-valued case a topologically mixing set-valued function will implies sensitive.

Theorem 3.1. Let (X,F ) be a set-valued dynamical system with X has at least two points. If F is topo-
logically mixing, then F has sensitive dependence on initial conditions.

Proof. Let u, v ∈ X such that u 6= v and let ε = d(u, v)/4. We show that ε is the constant that satisfy
the condition for sensitivity. Denote Bε(u) as the open ball center at u with radius ε and Bε(v) as
the open ball center at v with radius ε. Similarly, for any x ∈ X and any δ > 0 we denote Bδ(x)
as the open ball of x with radius δ. Since F is topologically mixing, there existsM1 ∈ N such that
for any m > M1 there is y ∈ Bδ(x) with an orbit (yi)∞i=0 such that ym ∈ Bε(u) and there exists
M2 ∈ N such that for any m > M2 there is z ∈ Bδ(x) with an orbit (zi)∞i=0 such that zm ∈ Bε(v).
LetM = max{M1,M2} so that the orbit (yi)∞i=0 and (zi)

∞
i=0 satisfy ym ∈ Bε(u) and zm ∈ Bε(v) for

allm > M . By generalized triangle inequality,

d(u, v) ≤ d(u, ym) + d(ym, zm) + d(zm, v).

Since d(u, v) = 4ε, d(u, ym) < ε and d(zm, v) < ε, we obtain

2ε ≤ d(ym, zm) ≤ d(ym, xm) + d(xm, zm).

Let (xi)∞i=0 be any orbit of x, then for some m > M it follows that either d(xm, ym) ≥ ε or
d(xm, zm) ≥ ε. Therefore, F is sensitive dependence on initial conditions.

Recall that a set-valued function F is topologically transitive if and only if there is a point
x ∈ X with an orbit (xi)∞i=0 ∈ CO(x) such that the orbit is dense in X (see Theorem 3.2 in [19]).
Point that satisfies such condition is called as transitive point. We give the definition of almost
equicontinuous and show that the set of transitive points is equivalent to the set of equicontinuous
points for a topologically transitive set-valued function.
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Definition 3.1. Let X be a compact metric space and F be a topologically transitive set-valued function.
If there exists at least one transitive point which is also an equicontinuous point, then F is said to be almost
equicontinuous.

Lemma 3.1. Let (X,F ) be a set-valued dynamical system with F is a topologically transitive set-valued
function. If the point x ∈ X is an equicontinuous point, then x is also a transitive point.

Proof. Let y be an arbitrary point of X and ε > 0. Since x is equicontinuous point, there exists a
δ > 0 such that for all z ∈ X satisfy d(x, z) < δ, then both x and z have an orbit (xi)∞i=0 and (zi)

∞
i=0

respectively such that d(xn, zn) < ε/2 for all positive integers n. Since F is topologically transitive,
for the open ball Bε/2(y) and Bδ(x), we can find m ∈ N and z ∈ Bδ(x) with an orbit (zi)∞i=0 such
that zm ∈ Bε/2(y). Then, by using triangle inequality, we have

d(xm, y) ≤ d(xm, zm) + d(zm, y) < ε/2 + ε/2 < ε,

which implies that xm ∈ Bε(y). Since y is chosen arbitrary, this means that x has an orbit that is
dense in X . Therefore, we conclude that x is a transitive point.

It is shown in [8] that for single-valued dynamical system (X, f) where f is a self-continuous
mapping of a nonempty set X , if f is topologically transitive, then either f is sensitive or f is
almost equicontinuous. The theorem below shows the connection between the equicontinuity
and sensitivity of a topologically transitive set-valued function.

Theorem 3.2. Let (X,F ) be a set-valued dynamical system with F is a topologically transitive set-valued
function. F is almost equicontinuous if and only if F is not sensitive dependence on initial conditions.

Proof. It is clear that if F is almost equicontinuous then F is not sensitive dependence on initial
conditions.

Now for the converse, suppose that F is not sensitive dependence on initial conditions. This
means that for all ε > 0 there exists x ∈ X and δ > 0 such that for all y ∈ X with d(x, y) < δ, both
x and y have an orbit (xi)∞i=0 and (yi)

∞
i=0 respectively satisfy d(xk, yk) < ε for all positive integer

k. Clearly, we can see that such point x satisfy the condition of being an equicontinuous point. By
Lemma 3.1 this implies that x is also a transitive point. Therefore F is almost equicontinuous.

There are other notions of sensitivity with different level of strengths such as collectively sen-
sitivity [18], generalized sensitivity [20], syndetically sensitivity and cofinitely sensitivity [13].
Among these notions, collectively sensitivity is one of the stronger forms where the sensitivity is
defined in view of a collection of points. We extend this notion to set-valued case and show its
relation with topologically weakly mixing set-valued function.

Definition 3.2. Let X be a compact metric space and F : X → 2X be a set-valued function on X . F is
said to be collectively sensitive with the collective sensitive constant ε if for any finite many distinct points
x1, x2, . . . , xn of X and any δ > 0, there exist distinct points y1, y2, . . . , yn of X and a positive integer k
such that xi and yi has an orbit

(
x
(j)
i

)∞
j=0

and
(
y
(j)
i

)∞
j=0

respectively for all i ∈ {1, 2, . . . , n} that satisfy
the following conditions:

i) d(xi, yi) < δ for all i ∈ {1, 2, . . . , n}.
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ii) There exists an i0 ∈ {1, 2, . . . , n} such that d
(
x
(k)
i , y

(k)
i0

)
≥ ε or d

(
x
(k)
i0
, y

(k)
i

)
≥ ε for all i ∈

{1, 2, . . . , n}.

We provide the following lemma here for the sake of completeness.

Lemma 3.2 ([19]). Let (X,F ) be a set-valued dynamical system and the iterations of any open set is an
open set of X . If the set-valued function F is topologically weakly mixing, then the product set-valued
dynamical system (Xn, F × · · · × F ) is topologically transitive for all integers n ≥ 1.

Theorem 3.3. Let (X,F ) be a set-valued dynamical system and the iterations of any open set is an open
set of X . If F is topologically weakly mixing, then F is collectively sensitive.

Proof. Let s1, s2 ∈ X be two distinct points with d(s1, s2) ≥ 4ε and Gj = {x ∈ X : d(x, sj) < ε}
for j = 1, 2. ClearlyG1 andG2 are two disjoint nonempty open subsets ofX . We will show that F
is collectively sensitive with the constant ε. Let x1, x2, . . . , xn be n distinct points of X and δ > 0.
For all i ∈ {1, 2, . . . , n}, denote B(xi, δ) as the open ball centered at xi with radius δ. Since F is
topologicallyweaklymixing, by Lemma 3.2 any k-product set-valued function ofF is topologically
transitive. Choose k = 2n, then for each open sets B(xi, δ) and Gj where i ∈ {1, 2, . . . , n} and j =
1, 2, there exists m ∈ N and zi, wi ∈ B(xi, δ) with an orbit

(
z
(k)
i

)∞
k=0

and
(
w

(k)
i

)∞
k=0

respectively

such that z(m)
i ∈ G1 and w(m)

i ∈ G2. By generalized triangle inequality,

d(s1, s2) ≤ d
(
s1, z

(m)
i

)
+ d

(
z
(m)
i , w

(m)
i

)
+ d

(
w

(m)
i , s2

)
,

and this implies that d
(
z
(m)
i , w

(m)
i

)
≥ 2ε for all i ∈ {1, 2, . . . , n}. Hence, each xi will have at least

an orbit
(
x
(j)
i

)∞
j=0

such that x(m)
i will satisfy

2ε ≤ d
(
z
(m)
i , w

(m)
i

)
≤ d

(
z
(m)
i , x

(m)
i

)
+ d

(
x
(m)
i , w

(m)
i

)
.

This means that either d
(
x
(m)
i , z

(m)
i

)
≥ ε or d

(
x
(m)
i , w

(m)
i

)
≥ ε. If d

(
x
(m)
i , z

(m)
i

)
≥ ε, let yi = zi.

If d
(
x
(m)
i , w

(m)
i

)
≥ ε, let yi = wi. Therefore, there exists yi ∈ B(xi, δ) such that d

(
x
(m)
i , y

(m)
i

)
≥ ε

for all i ∈ {1, 2, . . . , n} and this shows that F is collectively sensitive with the collective sensitively
constant ε.

4 More Properties on Transitivity and Mixing of Set-valued Function

In single-valued dynamical systems, both topologically transitive andmixing are preserved by
topological conjugacy (see [11]). We will show that these results remain true for set-valued case.
In addition, we show that topologically weakly mixing is invariant under conjugacy as well.

Theorem 4.1. Let (X,F ) and (Y,G) be set-valued dynamical systems where G is topologically conjugate
with F . Then F is topologically mixing on X if and only if G is topologically mixing on Y .

Proof. Assume F is topologically mixing. Since G is topologically conjugate with F , there exists a
homeomorphism function h : X → Y such that G ◦ h = h ◦ F . Let V1, V2 be any two nonempty
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open subsets of Y . It is clear that U1 = h−1(V1) and U2 = h−1(V2) are nonempty open subsets of
X . Since F is topologically mixing, there existsM ∈ N such that for any m > M there is x ∈ U1

with an orbit (xi)∞i=0 under F such that xm ∈ U2. We will use this orbit to construct a point in V1
with an orbit such that the iterate of the point greater thanM are contained in V2.

Note that by the definition of orbit for set-valued case,the orbit (xi)∞i=0 satisfy x = x0 and
xi+1 ∈ F (xi) for all i ≥ 0. For this orbit of x map each iterate under h and this will lead to
h(xi+1) ∈ h(F (xi)) = G(h(xi)). Hence, we obtain a point h(x) which is contained in Y and one
of its orbit (h(xi)i)∞i=0 under G. Since x ∈ U1, h(x) ∈ h(U1) = V1 and h(xm) ∈ h(U2) = V2. This
means that there is a point h(x) ∈ V1 which has an orbit (h(xi)i)∞i=0 such that h(xm) ∈ V2 for all
m > M . Since V1 and V2 are chosen arbitrary, we conclude that G is topologically mixing.

The converse can be proved exactly with the same arguments by interchanging the role of F
and G.

The next theorem shows the invariant property of topological transitivity for set-valued func-
tion.

Theorem 4.2. Let (X,F ) and (Y,G) be set-valued dynamical systems where G is topologically conjugate
with F . Then F is topologically transitive on X if and only if G is topologically transitive on Y .

Proof. Assume F is topologically transitive. SinceG is topologically conjugate with F , there exists
a homeomorphism function h : X → Y such that G ◦ h = h ◦ F . Let V1, V2 be arbitrary two
nonempty open subsets of Y . It is clear that U1 = h−1(V1) and U2 = h−1(V2) are nonempty open
subsets of X by the continuity of h−1. Since F is topologically transitive, there existsM ∈ N and
x ∈ U1 with an orbit (xi)∞i=0 under F such that xM ∈ U2.

Note that by the definition of orbit for set-valued case, the orbit (xi)∞i=0 satisfy x = x0 and
xi+1 ∈ F (xi) for all i ≥ 0. For this orbit of x, let us map each iterate under h and we have
h(xi+1) ∈ h(F (xi)) = G(h(xi)) for all i ≥ 0. Hence, we obtain a point h(x) which is contained
in Y and one of its orbit (h(xi))∞i=0 under G. Since x ∈ U1 and xM ∈ U2, h(x) ∈ h(U1) = V1 and
h(xM ) ∈ h(U2) = V2. This means that there is a point h(x) ∈ V1 which has an orbit (h(xi))∞i=0

such that h(xM ) ∈ V2. Since V1 and V2 are chosen arbitrary, we conclude that G is topologically
transitive.

The converse can be proved with the similar arguments by interchanging the role of F and
G.

Remark 4.1. If the function h is topological semi-conjugacy from (X,F ) and (Y,G) instead of topological
conjugacy, then F topologically transitive on X will implies G topologically transitive on Y . The converse
is not true in this case.

Theorem 4.3. Let (X,F ) and (Y,G) be set-valued dynamical systems where G is topologically conjugate
with F . Then, F is topologically weakly mixing onX if and only if G is topologically weakly mixing on Y .

Proof. Since G is topologically conjugate with F , there is a homeomorphism continuous function
h : X → Y such that G ◦ h = h ◦ F . Let U, V be two nonempty open subsets of Y × Y . Then there
exist nonempty open subsets U1, U2, V1, V2 of Y such that U1 × U2 ⊆ U and V1 × V2 ⊆ V . By the
homeomorphism of hwe have h−1(U1), h

−1(U2), h
−1(V1) and h−1(V2) as nonempty open subsets

of X . Since F is topologically weakly mixing, there existsm ∈ N and (x, y) ∈ h−1(U1) × h−1(U2)
with an orbit (xi, yi)∞i=0 such that (xm, ym) ∈ h−1(V1) × h−1(V2). This means that we have x ∈
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h−1(U1) with an orbit (xi)∞i=0 such that xm ∈ h−1(V1) and y ∈ h−1(U2) with an orbit (yi)∞i=0 such
that ym ∈ h−1(V2).

By the definition of orbit under set-valued function, the orbit (xi)∞i=0 satisfy x0 = x and xi+1 ∈
F (xi) for all i ≥ 0. Mapping each points from the orbit under h results h(x) ∈ h(h−1(U1)) = U1

and an orbit h(xi+1) ∈ h(f(xi)) = G(h(xi)) for all i ≥ 0. Therefore, we have h(x) ∈ U1 with an
orbit (h(xi))∞i=0 such that h(xm) ∈ V1. Similarly, we have h(y) ∈ U2 with an orbit (h(yi))∞i=0 such
that h(ym) ∈ V2. Hence, we have a point (h(x), h(y)) ∈ U1×U2 with an orbit (h(xi), h(yi))∞i=0 such
that h(xm, ym) ∈ V1 × V2. This shows that G × G is topologically transitive which implies that G
is topologically weakly mixing.

The converse can be proved in a similar fashion by switching the role of F and G.

For single-valued case, [7] showed that a dynamical systemwith topologicallymixingproperty
and its direct product with an arbitrary minimal dynamical system has transitive property. Below
we present some implications on the product set-valued dynamical systems formed by two set-
valued dynamical systems with various transitivity and mixing conditions.

Theorem 4.4. Let (X,F ) and (Y,G) be set-valued dynamical systems. Assume that G is topologically
mixing. If F is topologically mixing, then F ×G is topologically mixing.

Proof. Let U1, U2 be nonempty open subsets ofX and V1, V2 be nonempty open subsets of Y . Since
both set-valued functions F and G are topologically mixing, there exists M1 ∈ N such that for
any m > M1 there is x ∈ U1 with an orbit (xi)∞i=0 such that xm ∈ U2 and there exists M2 ∈ N
such that for any m > M2 there is y ∈ V1 with an orbit (yi)∞i=0 such that ym ∈ V2. Now denote
M = max{M1,M2}, then for all m > M there is x ∈ U1 with an orbit (xi)∞i=0 and y ∈ V1 with
an orbit (yi)∞i=0 such that xm ∈ U2 and ym ∈ V2. For the product set-valued dynamical system
(X × Y, F × G), both U1 × V1 and U2 × V2 are nonempty open subsets of X × Y . Therefore, we
have M ∈ N such that for all m > M there exists some (x, y) ∈ U1 × V1 with an orbit (xi, yi)∞i=0

such that (xm, ym) ∈ U2 × V2. This shows that F ×G is topologically mixing.

From Theorem 4.4, we obtain the following corollary.

Corollary 4.1. Let (X,F ) be a set-valued dynamical system. If F is topologically mixing, then the product
set-valued function F × F is topologically mixing.

Theorem 4.5. Let (X,F ) and (Y,G) be set-valued dynamical systems. Assume that G is topologically
mixing. If F is topologically weakly mixing, then F ×G is topologically weakly mixing.

Proof. Let U1, U2, V1, V2 be nonempty open subsets of X . Suppose that F is topologically weakly
mixing, this means that the product set-valued function F × F is topologically transitive. Hence
there exists n ∈ N and (x1, x2) ∈ U1 × V1 with an orbit

(
x
(i)
1 , x

(i)
2

)∞
i=0

such that
(
x
(n)
1 , x

(n)
2

)
∈

U2 × V2. Since G is topologically mixing, by Corollary 4.1 , G × G is topologically mixing. This
means that for any nonempty open subsets A1, A2, B1, B2 of Y , we may choose a positive integer
M ≤ n such that for any m > M there is (y1, y2) ∈ A1 × B1 with an orbit

(
y
(i)
1 , y

(i)
2

)∞
i=0

satisfy(
x
(n)
1 , x

(n)
2

)
∈ A2 × B2. For product set-valued dynamical system (X × Y, F × G), the subsets

U1×A1, U2×A2, V1×B1 and V2×B2 are nonempty and open inX×Y . Hence, for (X×Y )×(X×Y ),
we have a point (x1, y1, x2, y2) ∈ (U1 ×A1)× (V1 ×B1)with an orbit

(
x
(i)
1 , y

(i)
1 , x

(i)
2 , y

(i)
2

)∞
i=0

such
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that
(
x
(n)
1 , y

(n)
1 , x

(n)
2 , y

(n)
2

)
∈ (U2×A2)×(V2×B2). This shows that (F×G)×(F×G) is topologically

transitive which implies that F ×G is topologically weakly mixing.

Theorem 4.6. Let (X,F ) and (Y,G) be set-valued dynamical systems. Assume that G is topologically
mixing. If F is topologically transitive, then F ×G is topologically transitive.

Proof. Let U1, U2 be arbitrary nonempty open subsets ofX and V1, V2 be arbitrary nonempty open
subsets of Y . Suppose that F is topologically transitive, there exists N ∈ N and x ∈ U1 with an
orbit (xi)∞i=0 such that xN ∈ U2. Since G is topologically mixing, we can choose a positive integer
M ≤ N such that for anym > M there is y ∈ V1 with an orbit (yi)∞i=0 such that ym ∈ V2. AsU1×V1
and U2 × V2 are nonempty open subsets of X × Y , we have N and a point (x, y) ∈ U1 × V1 with
an orbit (xi, yi)∞i=0 such that (xN , yN ) ∈ U2 × V2. Therefore, F ×G is topologically transitive.

To end this section, we give an equivalent condition of topologically weakly mixing.

Theorem 4.7. Let (X,F ) be a set-valued dynamical system. F is topologically weakly mixing if and only
if for any open subsets U, V1, V2 of X , there exist m ∈ N and x, y ∈ U with an orbit (xi)∞i=0 and (yi)

∞
i=0

respectively such that xm ∈ V1 and ym ∈ V2.

Proof. It is clear that if F is topologically weakly mixing then the stated condition is satisfied.
Conversely, suppose that the condition holds and let U1, U2, V1, V2 be arbitrary nonempty open
subsets of X . In order to show that F is topologically weakly mixing, we need to find an m ∈ N
and (x, y) ∈ U1 × U2 with an orbit (xi, yi)∞i=0 such that (xm, ym) ∈ V1 × V2. For U1, U2 and V1, by
the given condition there exists n ∈ N and x, z ∈ U1 with an orbit (xi)∞i=0 and (zi)

∞
i=0 respectively

such that xn ∈ U2 and zn ∈ V1. Denote

U = {x ∈ X : x ∈ U1 with an orbit (xi)∞i=0 such that xn ∈ U2} .

For int(U), V1 and int(F−n(V2)), again by the condition there existsm ∈ N and x,w ∈ int(U)with
an orbit (xi)∞i=0 and (wi)

∞
i=0 such that xm ∈ V1 and wm ∈ int(F−n(V2)). Since x ∈ int(U) ⊂ U ,

this means that x ∈ U1 and has an orbit (xi)∞i=0 such that xm ∈ V1. Since w ∈ int(U) ⊂ U , winU1

and has an orbit (wi)∞i=0 such that wn ∈ U2. Furthermore, wm ∈ int(F−n(V2)) ⊆ F−n(V2) and
this implies that wm+n ∈ FnF−n(V2) ⊂ V2 ∩ Fn(X). Therefore we have a point w ∈ U with an
orbit (wi)∞i=0 such that wn ∈ U2 and wm+n ∈ V2. Let y = wn and we complete the proof.

5 Conclusions

In this paper, we have generalized the notion of sensitivity to set-valued dynamical system and
showed that a topologically transitive set-valued function implies sensitive. We also introduced
collectively sensitive, which is a stronger form of sensitive and showed that topologically weakly
mixing set-valued function implies collectively sensitive. Furthermore, we have proved that both
transitivity and mixing properties of set-valued dynamical systems are preserved under topolog-
ical conjugacy, which similar to their corresponding results in single-valued case. Besides that,
we constructed a product set-valued dynamical system from two set-valued dynamical systems
with different transitivity and mixing conditions and investigated their effects on the product set-
valued dynamical system.

We end this paper with the following questions:
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Question 5.1. Does a set-valued function F : X → 2X that is topologically transitive implies sensitive
dependence on initial conditions?

Question 5.2. For two set-valued dynamical systems (X,F ) and (Y,G), what will happen to the product
set-valued function F ×G if both G and F are topologically weakly mixing?

Question 5.3. For two set-valued dynamical systems (X,F ) and (Y,G), what will happen to the product
set-valued function F ×G if both G and F are topologically transitive?
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